
Abstract Crop performance is often shown as

areas of differing grain yield. Many producers

utilize simple GIS color ramping techniques to

produce visual yield maps with delineated clusters.

However, a more quantitative approach such as an

unsupervised clustering procedure is generally used

by scientists since it is much less arbitrary. Intui-

tively the yield clusters are due to soil and terrain

properties, but there is no clear criterion for the

delineation. We compared the effectiveness of two

delineation or classification procedures: quadratic

discriminant analysis (QDA) and k-nearest neigh-

bor discriminant analysis (k-NN) for the study of

how yield temporal patterns relate to site proper-

ties. This study used three production fields, one in

Monticello, IL, and two in Centralia, MO. Clusters

were defined using maize (Zea mays L.) and

soybean (Glycine max (L.) Merr.) yield from three

seasons. The k-NN had greater and more consistent

successful classification rates than did QDA. Clas-

sification success rate varied from 0.465 to 0.790 for

QDA while the k-NN classification rate varied from

0.794 to 0.874. This shows that areas of certain

temporal yield patterns correspond to areas of

specific site properties. Although profiles of site

properties differ by crop and production field, areas

of consistent low maize yield had greater shallow

electrical conductivity (ECshallow), than those of

consistent high maize yield. Furthermore, areas of

consistent high soybean yield had lower soil reflec-

tance than those areas of consistent low yields.
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Introduction

Subdividing large fields into smaller homoge-

neous areas is appealing to producers. A common
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assumption is that site properties contribute

largely to crop performance and yield and thus

one should be able to predict yield with these

properties (Fleming et al. 2000; Franzen et al.

2002; Johnson et al. 2003; Chang et al. 2003;

Schepers et al. 2004). Note that knowing the

yield potential of an area does not always provide

sufficient information for management, but there

is still interest in the information (Bullock and

Bullock 2000). Undeniably the relationships

between site characteristics and crop performance

in production fields are very complex due to the

large effect of, and interactions with, stochastic

environmental effects during the production sea-

son (Bullock and Bullock 2000).

Yield spatial patterns vary within a field for a

given year and from season to season (Jaynes and

Colvin 1997). There are areas of consistent yield

across space and time and there are areas of non-

consistent yield across space and time (Eghball

et al. 1999; Taylor et al. 2003). These patterns are

further complicated since areas of common yield

patterns in the same field can differ by crop. For

example, in a maize–soybean rotation an area

that consistently produces high maize yields does

not necessarily produce high soybean yields

(Brock et al. 2005).

The first step in the task of understanding how

site properties affect spatial patterns of yield is to

develop the yield clusters. Areas of common yield

patterns across seasons are well and commonly

delineated by a non-hierarchical cluster analysis

such as the k-means cluster algorithm, which is an

unsupervised classification method with no

requirements of previous training areas (Lark

and Stafford 1997). This method assumes neither

a normal distribution nor homogeneous variances

for the input variables (Johnson and Wichern

2002). It iteratively calculates the sum of statisti-

cal distances from every observation to the group

centroid or multivariate mean. The iterative

process finishes when a centroid position is found

that minimizes the sum of the distances between

each observation and its centroid (Khattree and

Naik 1999; Johnson and Wichern 2002).

To classify or predict maize yield clusters using

site properties (e.g. soil organic matter (SOM),

electrical conductivity (EC), slope, etc.) as

explanatory variables, Jaynes et al. (2003) and

Ping et al. (2005) proposed the use of discrimi-

nant analysis. There are numerous discriminate

analysis procedures (Khattree and Naik 1999).

The common discrimination procedures assume

multivariate normality for the individual popula-

tions. We shall refer to those as ordinary discri-

minant analysis procedures. The ordinary

discriminant analysis procedure is based on the

estimation of linear or quadratic functions to

maximize differences between groups using

explanatory variables (Khattree and Naik 1999;

Johnson and Wichern 2002). Jaynes et al. (2003)

used a quadratic function to predict maize yield

clusters using site variables as predictors with

variable classification success. Ping et al. (2005)

used ordinary discriminant linear analysis to

predict areas of high and low average cotton

yields using six variables with a classification

success of 76.9% for 39 field subsections.

A limitation of ordinary discriminant analysis

is that it assumes multivariate normality of the

explanatory variables. However, site properties in

production fields, such as soil P, soil K or SOM,

often have non-normal distributions and hetero-

geneous variances. If the assumptions of normal-

ity or of homogeneity of variances are violated,

ordinary discriminant analysis leads to misleading

inferences (Khattree and Naik 1999). Data trans-

formation can be attempted, but it is often not

sufficient to meet these assumptions. There exist

non-parametric discriminant analysis procedures

and parametric discriminant analysis procedures

which utilize distributions other than multivariate

normal, such as kernel density and logistic discri-

minant analysis, but these are not commonly seen

in the applied agriculture literature (Khattree and

Naik 1999; Kravchenko et al. 2002).

Another issue to consider is the structure of the

data as described by Tominaga (1999). In general,

yield data are classified as symmetric if all the

members of a yield cluster are contiguous and

asymmetric if the members of a cluster type are

not contiguous. Tominaga (1999), reports that the

ordinary discriminant methods such as QDA

perform much better when the data structure is

symmetric than when the data are asymmetric.

This presents a challenge for grain yield data

since the clusters are usually not contiguous. For

example, a given field may have four different
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yield classes (very low, moderately low, moder-

ately high and very high) and thus four types of

clusters. But not all of the members of a given

yield class are likely to be contiguous. Typically,

fields consist of areas of similar grain yield, but

the clusters are of differing size, non-contiguous

and exhibit substantial embedding, in other words

there are clusters within (nested) clusters.

Due to these problems with distributional

assumptions and data structure the task of

relating yield clusters to field properties is not

well suited to ordinary discriminant analysis. We

propose that the k-NN discriminant analysis

procedure is appropriate for large datasets such

as these. The main difference between k-NN

discriminant analysis and QDA is that the first

method considers the distances between the

observation to be classified and its nearest

neighbors, while the second method considers

statistical distances between the observation to be

classified and the centriods (multivariate mean

vector) of the classes. This makes k-NN more

appropriate for classifying asymmetric data sets

which aim to predict the toxicity of new chemical

compounds (Tominaga 1999). The k-NN has been

applied in other research fields to analyze asym-

metric datasets. Malhotra et al. (1999) classified

business performance more accurately with k-NN

than with QDA. Liu et al. (2003) compared

classification success of forest inventories using

neural networks and statistical methods. They

found that k-NN outperformed the remaining

statistical methods. We hypothesize that areas of

common maize and soybean yield temporal

patterns are related to spatial patterns of site

properties and that the yield cluster prediction

performance of k-NN discriminant analysis is

superior to that of ordinary discriminant analysis.

Materials and methods

The study was carried out in three production

fields: Williams North (WN), (Lat. 40.3031,

Long. –88.5426), located at Monticello, east central

Illinois; GVillo (GV) (Lat. 39.2297, Long.

–92.1169) and Field1 (F1) (Lat. 39.2346, Long.

–92.1469), both located at Centralia, north-central

Missouri. The WN field is 16 ha and its main soils

are fine-silty illitic, mesic Typic Endoaquaoll; and

fine illitic, mesic Mollic Hapludalf (Officer et al.

2004). The GV field is 14 ha while the F1 field is

18 ha. The main soils in these two fields are fine

smectitic, mesic Vertic Epiaqualf; fine-loamy

mixed superactive, mesic Typic Hapludalf; fine

smectitic, mesic Aeric Vertic Epiaqualf; and fine

smectitic, mesic Vertic Albaqualf as dominant

soils (Kitchen et al. 1999). The 20-year average

precipitation from April to October is 670.3 mm

and 667.5 mm in Monticello and Centralia, respec-

tively. During 1997 and 2001 precipitation was less

than the 20-year average. Similarly, at Centralia, in

1997 and 1999 precipitation was less than the

average. In 1998 precipitation was greater than the

20-year average at both locations. Descriptive

statistics of the site characteristics are presented

on a field-by-field basis in Table 1. All the fields

have been in a maize and soybean rotation for a

minimum of 15 years. Crop and field management

practices followed the standard management prac-

tices for East Central Illinois (Illinois Agronomy

Handbook 2003) and Central Missouri (Kitchen

et al. 1997).

Data collection

Apparent electrical conductivity surveys were

performed using a Veris 3100 sensor cart (Divi-

sion of Geoprobe Systems, Salina, KS). Since

conductivity measures are affected by soil mois-

ture, clay content, soil temperature, and salinity,

measurements were done under similar condi-

tions in October of 1999 when the field was at

field capacity (Kitchen et al. 2003). The sensor

has multiple coulter electrodes in a Wenner

arrangement (Kitchen et al. 2003). The electrodes

are configured in such way that EC was measured

at two depths where 90% of the current drop is

observed: from 0 to 30 cm (ECshallow), and from 0

to 90 cm (ECdeep) (Sudduth et al. 2003). These

observations were georeferenced with a differen-

tial GPS every 4 m along transects separated by

approximately 10 m.

Elevation surveys were carried out in October

of 1999 with a Leica 500 RTK DGPS (Leica 500

RTK, Leica, Heerburgg, Switzerland) system at

WN and an Astech Z Surveyor RTK (Astech Z,

Thales Navegation, Carquefou, France) at GV
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and F1, with 2 cm of vertical and horizontal

precision. The GPS equipments were mounted on

a four wheel ATV. The observations were

arranged as a 10 m semi-regular grid. Elevation

was standardized to the lowest position of the

field. The resulting grid was used to derive field

slope as a percentage (Kravchenko and Bullock

2000).

Soils were sampled in July of 2001 at WN, IL,

as a modified grid in 390 locations as described by

(Martin et al. 2005). Soils located in GV and F1,

were sampled in a grid pattern in October of 1995

as described by Officer et al. (2004) in 208

locations for GV, and 466 locations for F1. State

and commercial laboratories determined soil

organic matter (SOM) (Carlo-Erba analyzer,

Carlo-Erba, Italy), (Bray-P1) and K(Mehlich

N�3) (Officer et al. 2004).

Bare soil reflectance was acquired in late April

and early May of 2001 and 2002 using a multi-

spectral sensor, mounted on a satellite following a

sun synchronous orbit at 681 km of altitude

(IKONOS, Space Imaging Thornton, CO). The

sensor divided the spectrum into four bands: blue

(BR), with center in 480.3 nm and a range of

71.3 nm; green (GR), with center in the 550.7 nm

and a range of 88.6 nm; red (RR) with center of

664.8 nm and a range of 65.8 nm; and near

infrared (NIR), with center in 805 nm and a

range of 94.5 nm. The image provider performed

image geometric and spectral calibrations.

Soybean and maize yields were obtained using

combines equipped with yield monitors (Ag

Leader Technology, Ames, IA) in six consecutive

seasons, three for maize and three for soybean, as

seen in Table 2. Grain data was recorded on

1-second intervals and corrected to 13 and 15.5%

moisture, in October and September, for soybean

and maize, respectively. Unreliable yield obser-

vations including positioning errors, abrupt

changes in combine speed, and grain flow were

removed following the guidelines of Kitchen et al.

(2003). Yields were transformed into standard

deviation units.

All the variables were interpolated to the same

spatial scale as the IKONOS images (4 ·4 m)

using regionalized variable theory (ESRI 2001)

Table 1 Site variables descriptive statistics for WN, GV, and F1

Field Elev. Stda. Slope ECdeep
b ECshallow

c BRd GRe RRf NIRg SOMh Soil Pi Soil Kj

Units m % mS m–1 mS m–1 % kg Mg–1 kg Mg–1

WN Mean 4.1 2.2 38.6 26.8 0.46 0.55 0.55 0.64 3.80 22.4 135.9
CV 42.1 37.2 26.8 25.3 5.7 9.2 11.9 11.6 16.4 35.2 13.5
Skewness –0.46 –0.10 0.77 1.01 –0.37 –0.28 –0.41 –0.70 1.02 3.90 2.52
Kurtosis –0.81 –0.89 0.77 0.66 –0.20 –0.23 –0.22 0.02 0.33 23.10 14.64

GV Mean 4.1 1.9 25.9 16.6 0.45 0.51 0.48 0.64 2.5 34.3 247.3
CV 52.1 58.6 41.0 43.9 4.7 6.6 10.0 9.4 9.3 39.6 18.3
Skewness –0.03 0.66 0.18 1.32 –0.13 0.01 –0.25 1.57 –0.41 1.56 1.12
Kurtosis –1.41 0.44 –0.59 1.46 0.48 0.46 0.92 1.04 –0.67 3.17 0.46

F1 Mean 1.8 0.78 18.4 9.30 0.42 0.49 0.41 0.80 2.4 22.5 193.8
CV 43.2 35.4 40.0 27.8 4.0 4.3 8.6 9.7 8.9 54.6 15.6
Skewness* –0.13 1.24 0.79 1.64 0.35 ––0.42 0.17 –0.56 –0.42 2.68 1.53
Kurtosis* –0.83 2.73 0.72 5.23 1.05 3.03 1.51 1.90 –0.01 3.01 –1.24

* Skewness and kurtosis absolute values greater than one indicate departures from normality

Abbreviations: a standardized elevation, b deep electrical conductivity, c shallow electrical conductivity, d blue soil
reflectance, e green soil reflectance, f red soil reflectance, g near infrared soil reflectance, h soil organic matter, i soil
phosphorous, j soil potassium

Table 2 Cluster number, R2, for yield clusters produced
by using yields of multiple seasons, for corn and soybean at
WN, GV and F1

Field Crop Season Clusters R2

WN Corn 1996, 1998, 2000 4 0.58
Soybean 1997, 1999, 2001 4 0.67

GV Corn 1997, 2000, 2002 3 0.58
Soybean 1998, 1999, 2001 3 0.47

F1 Corn 1997, 1999, 2001 4 0.66
Soybean 1998, 2000, 2002 4 0.55
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according to Goovaerts (1997). Isotropic semi-

variograms were estimated for all the variables

using spatial lags of between 8 and 15 m. The

semivariogram models we selected using cross

validation error mean and standard error as well

as plots comparing estimated versus predicted

values. The obtained spatial structures were

applied in ordinary kriging interpolations to

produce multivariate datasets arranged in regular

grids of 4 ·4 m.

Data analysis

Descriptive statistics of the site characteristics,

obtained with the UNIVARIATE procedure of

SAS (SAS Inst. 2002). For each dataset observa-

tion of the 4 ·4 m grid (x1, x2,... xn), crop yield

data from three season years defined an (X1,

X2,...Xn) vector. The k-means cluster analysis was

performed with FASTCLUS procedure of SAS

(SAS Inst. 2002). Observations were grouped

according to their Euclidian distances to the

group centroid.

d2
gðx1; x2Þ ¼ ðX1 �X2Þ0ðX1 �X2Þ; ð1Þ

where d2 is square distance between observation

x1 and x2, (Johnson and Wichern 2002; Khattree

and Naik 1999). This distance measure is appro-

priate for datasets of unequal variances and non-

zero covariances.

The clustering algorithm creates clusters by

minimizing the distances between observations

from the same cluster and by maximizing the

distances between observations of different clus-

ters (Khattree and Naik 1999). The k-mean

clustering procedure defines as many clusters as

requested . The optimum number of groups was

selected based on the coefficient of determination

(R2), and the cubic clustering criterion (Khattree

and Naik 1999). As cluster number increases, the

R2 increases logarithmically while the cubic clus-

tering criterion decreases exponentially. When

the R2 and the cubic clustering criterion values

stabilize, the number of clusters is optimum

(Khattree and Naik 1999).

The resulting clusters define areas of distinctive

crop performance for three seasons for each crop.

Yields clusters in areas with the highest yield

performance across the seasons were defined as

cluster 1. Then clusters of decreasing yield perfor-

mance were labeled cluster 2, cluster 3 and cluster 4.

The agreement between maize and soybean

grain yield clusters was measured by the Kappa

index of agreement (KIA) (Stafford et al. 1996;

Ping et al. 2005) using the FREC procedure of

SAS (SAS Inst. 2002). The KIA varies between 0

(no association) and 1 (perfect association). This

index is based on contingency tables that compare

how many observations in a given soybean grain

yield cluster correspond to a similar maize grain

yield cluster

KIA ¼ Po � Pe

1� Pe
; ð2Þ

where Po = cumulative proportion of actual

matches for each cluster over the total number

of observations, Pe = cumulative proportion of

expected matches for each cluster over the total

number of observations.

The occurrence of a certain yield cluster was

predicted using the site variables (SOM, K, P, soil

reflectances, ECdeep, ECshallow, elevation and

slope), for each location where a yield cluster was

defined using two alternative methods of discrimi-

nant analysis: quadratic ordinary discriminant

analysis (QDA) and k-NN discriminant analyses

(k-NN).

Quadratic discriminant functions predict loca-

tion group membership probability to a certain

group as

P̂ðcjXiÞ ¼
qcjScj�

1
2: expð� 1

2 D2
icÞ

Pk
g0¼1 qc0 jSc0 j�

1
2: expð� 1

2 D2
ic0 Þ

; ð3Þ

where D2
ic is the Mahalanobis distance, which

considers the variance covariance matrix, between

each observation and a c or c¢ group centroid or

multivariate mean (Johnson and Wichern 2002). As

the distance between a point i and the centroid c

decreases with respect to the other centroid c¢, the

probability of belonging to c increases (Huberty

1994; Johnson and Wichern 2002). These distances

are proportional to the output of quadratic

classification function made for each group Qic

�2Qic ¼ ln S�1
c þD2

ic � 2 ln qc; ð4Þ
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Thus, as result of the quadratic classification

function Qic, the distance to the group centroid

D2
ic decreases and P̂ðcjXiÞ increases. The Qic for

each observation is estimated as,

Qic ¼ cþ bcXi þX 0i AcXi; ð5Þ

where c is the intercept, b is the vector of linear

coefficients and A is the matrix of quadratic

coefficients for a group g (Khattree and Naik

1999; Johnson and Wichern 2002).

The k-NN operates based on multivariate

distances between observations that are measured

using classification variables (slope, elevation,

ECdeep, ECshallow, BR, GR, RR, NIR). Location

membership to a given group (cluster 1, cluster 2,

etc.) will depend upon the yield cluster member-

ship of the four nearest neighbors in terms of the

multivariate Mahalanobis distance. These multi-

variate distances depend on the site properties for

each location. Membership probability for a

location i in a certain group (or yield cluster) c,

is indicated as (Huberty 1994),

P̂ðcjXiÞ ¼
mc

Pk
c0¼1 mc0

; ð6Þ

where Xi is the initial population of i locations, mc

is the number of units belonging to a group c, and

k is the number neighbors used to predict group

membership (Huberty 1994). The observation

will belong to the group where the highest

probability is observed.

Site characteristics variances were shown to be

heterogeneous across groups, thus linear and

canonical discriminant analysis were unsuitable.

Therefore, quadratic discriminant analysis was

selected. Normal score transformations were

applied to guarantee the normal distribution of

the classification variables as suggested by

Goovaerts (1997) and Kravchenko et al. (2002).

The prediction success of k-NN was compared

to that of the QDA (Jaynes et al. 2003). The

successful observation classification into different

clusters of each discrimination method was eval-

uated with the FREC cross-validation procedure

of SAS (SAS Inst. 2002). This method consists of

setting aside one observation to test the classifi-

cation function obtained with the remaining

observations (Huberty and Lowman 1997). This

process is repeated for all the observations in the

dataset.

Prediction performance was evaluated com-

paring the number of successful predictions nc by

each method with the expected success if the

observations were assigned by random chance

ec ¼ tcqc; ð7Þ

where tc is the number of observations in group g

and qc is the probability of belonging to group c.

The increase in prediction performance, I,

between k-NN and QDA and random chance

was estimated as

I ¼ Hnc �Hec

1�Hec
100; ð8Þ

where Hnc and Hec correspond to the proportion

of successful classification and expected random

chance assignment, respectively (Huberty 1994).

This index measures how much the classification

success improves when random observation

assignment to a given cluster is replaced by any

discriminant analysis method.

Results and discussion

Yield cluster identification

For all year and crop combinations, the k-means

clustering procedure successfully separated areas

of consistent crop yields across seasons (Table 2).

According to the coefficient of determination

(R2) clusters explained from 0.47 to 0.67 of the

yield variation across years.

Field WN and F1 had four maize and four

soybean clusters while GV had three maize and

three soybean clusters (Table 2). When crop yield

patterns of the individual clusters were investi-

gated across seasons, cluster 1 had the highest

consistent yield performance with the exception

of maize at GV in 2000 (Fig. 1). Clusters 2 and 3

had intermediate yield performance for WN and

F1. Finally, cluster 4 at WN and F1 and cluster 3

at GV consistently had the lowest yield. For all

fields and crops, the yield of the lower quartile of

cluster 1 was greater than the yield of the upper
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quartile of cluster 4 at WN and F1 and cluster 3 at

GV (Fig. 1). Note, that clusters 1 and 4 at WN

and F1 and cluster 1 and 3 at GV are consistent

high and low yielding, respectively and thus

stable, while clusters 2 and 3 at WN and F1 and

cluster 2 at GV are unstable and exhibit a range

of yield over time. This outcome agrees with the

categories presented by Blackmore et al. (2003).

They proposed that within a given production

field there are stable-high-yielding areas, stable-

low-yielding areas, and unstable areas. Brock

et al. (2005) described their clusters according to

their average yield across seasons in high,

medium-high, medium-low, and low yield.
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Fig. 1 Cluster yields in standard deviations for corn (a, c,
e) and soybean (b, d, f), at WN (a and b), at GV (c and d)
and at F1 (e and f). Standardized yields were represented

as for cluster 1, for cluster 2, for
cluster 3, and for cluster 4. The bars, indicates the
quartile boundaries for cluster 1 and cluster 4
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Alternatively, Jaynes et al. (2003) associated

yield cluster not with average yield but with

different landscape positions.

Spatial agreement between maize and soybean

clusters

There were different levels of agreement between

clusters of yield patterns for maize and soybean

but overall KIA values were lower than 0.4. In

WN, the proportion of matching clusters (Po) was

0.386, and KIA was 0.213. In GV the agreement of

clusters was the best with a Po of 0.575, and a KIA

of 0.328. Conversely, in F1 maize and soybean

cluster 1 had a Po of 0.344, and KIA of 0.132.

Similarly, Brock et al. (2005) using weighed KIA

found diverse levels of agreement between soy-

bean and maize yield clusters that ranged from

0.06 to 0.34.

The results suggest that clusters of maize grain

yield do not always correspond to the same field

areas of clusters soybean grain yield, and areas of

stable low maize yield do not always correspond to

areas of stable low soybean yield. Brock et al.

(2005) reported stronger associations between

wheat (Triticum aestivum L.) yield clusters versus

corn and soybean clusters than between corn and

soybean clusters only. They suggested that there

were differences in the spatial structure of the

limiting factors for corn and soybean. Sadras and

Calviño (2001) reported that under water supply

restrictions maize yield decreased more than

soybean yield. In addition, Kaspar et al. (2004)

indicated that in eroded areas of lower water and

nutrient supply maize yield decreased more than

soybean yield. Conversely, they also found that

under excessive water supply soybean yield

decreased more than maize yield.

Table 3 Classification performance of quadratic and
k-NN discriminant analysis at WN, GV, F1 production
fields for corn and soybean in a cluster-by-cluster basis:
number of observations (tc), expected number of
successfully classified observations by random chance

(ec), proportion successfully classified observations by
random chance (Hec), successfully classified observations
(nc), proportion of successfully classified observations
(Hnc), improvement in classification success compared
with random cluster assignment (Ic)

Field Crop Cluster tc (obs.) ec (obs.) Hec

(prop.)
QDA k-NN

nc (obs.) Hnc (prop.) Ic (%) nc (obs.) Hnc (prop.) Ic (%)

WN Corn Cluster 1 2576 711 0.076 1969 0.764 74.5 2186 0.849 83.7
Cluster 2 2583 715 0.077 1393 0.539 50.1 2100 0.813 79.7
Cluster 3 2494 668 0.072 870 0.349 29.9 1955 0.784 76.7
Cluster 4 1666 298 0.032 886 0.532 51.7 1349 0.81 80.4

Soybean Cluster 1 2322 578 0.062 749 0.323 27.8 1884 0.811 79.8
Cluster 2 2556 700 0.075 1150 0.45 40.5 2029 0.794 77.7
Cluster 3 2618 736 0.079 1726 0.659 63.0 2044 0.781 76.2
Cluster 4 1823 357 0.038 777 0.426 40.3 1441 0.790 78.2

GV Corn Cluster 1 1941 489 0.064 1471 0.758 74.2 1708 0.88 87.2
Cluster 2 4352 2463 0.320 3861 0.887 83.4 4037 0.928 89.4
Cluster 3 1400 255 0.033 1013 0.724 71.5 1110 0.793 78.6

Soybean Cluster 1 1298 219 0.029 750 0.578 56.6 1026 0.79 78.4
Cluster 2 3489 1584 0.206 2603 0.746 68.0 3049 0.874 84.1
Cluster 3 2906 1098 0.143 2094 0.721 67.5 2600 0.895 87.8

F1 Corn Cluster 1 3684 866 0.055 2675 0.726 71.0 3314 0.900 89.4
Cluster 2 6520 2719 0.174 4935 0.757 70.6 5925 0.909 89.0
Cluster 3 2419 375 0.024 841 0.348 33.2 1881 0.778 77.3
Cluster 4 3023 583 0.037 2423 0.802 79.4 2749 0.909 90.5

Soybean Cluster 1 4365 1218 0.078 2535 0.581 54.6 3857 0.884 87.4
Cluster 2 6604 2787 0.178 5474 0.829 79.2 5802 0.879 85.3
Cluster 3 3897 970 0.062 1586 0.407 36.8 3209 0.823 81.1
Cluster 4 780 39 0.002 427 0.547 54.6 589 0.755 75.4
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Yield cluster prediction

For both prediction methods (i.e. QDA and

k-NN), site characteristics had higher probabilities

of classifying grain yield clusters than that of

random chance classification, as measured by the

I index (Table 3). These results imply that areas of

common yield pattern relate to site characteristics.

Fig. 2 Maps of yield cluster membership probability at
WN for corn (a), (b), (c) and (d) and soybean (e), (f), (g),
(h). Cluster 1 predicted with QDA (a) and (e); and with k-

NN (b) and (f). Cluster 4 membership probability pre-
dicted with QDA (c) and (g); n with k-NN (d) and (h)
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This outcome agrees with the results presented by

Jaynes et al. (2003), Brock et al. (2005); and Ping

et al. (2005), who found the site properties were

related to yield clusters. Both methods also

estimate the probability of a certain location to

belong to a certain yield cluster using site

variables. These probabilities were mapped in

Figs. 2, 3, and 4.

The proportion of successful classified obser-

vations (Hn) and the improvement in classifica-

tion success rates compared to random assignment

(I) were greater for k-NN than QDA (Table 3).

When classification performance was evaluated on

a by cluster basis, the k-NN presented a more

consistent classification performance than that of

QDA (Table 3). When QDA was used, the

classification success (Hnc) for the 22 clusters

had a mean of 0.612 and CV of 28.2%. The

classification success varied from 0.323

(I = 27.8%) for soybean cluster 1 in WN to 0.887

(I = 83.4%) for maize cluster 2 (Table 3). These

results are consistent with the uncertain classifi-

cation results obtained by Jaynes et al. (2003).

They reported classification success rates that

ranged form 0.142 to 1. They improved poor

classification success by merging the clusters with

the lowest success rate.

Overall clusters, the classification success of

QDA had a mean of 0.612 and a CV of 28.21%.

The classification success for k-NN had a mean of

0.832 and CV of 6.36%. The classification success

varied from 0.323 (Ic = 27.8%) to 0.887

(Ic = 83.4%). The classification success varied

from 0.755 (Ic = 75.4%) in cluster 4 for soybean

at WN to 0.928 (Ic = 89.4%) in cluster 2 for maize

at GV (Table 3). The increase in classification

success when k-NN is compared with QDA

was an average 24.3% and it was statistically

Fig. 3 Maps of yield cluster membership probability at
GV for corn (a), (b), (c) and (d) and soybean (e), (f), (g),
(h). Cluster 1 predicted with QDA (a) and (e); and with k-

NN (b) and (f). Cluster 4 membership probability
predicted with QDA (c) and (g); n with k-NN (d) and (h)
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significant (t = 7.945). This clearly shows the

superiority of in classification performance of k-

NN over QDA discriminant analysis. The differ-

ences in classification success were consistent for

different cluster types.

Site characteristics associated with yield

clusters

Site characteristic profiles in Figs. 5 and 6

show the site attribute mean and quartiles for

Fig. 4 Maps of yield cluster membership probability at F1
for corn (a), (b), (c) and (d) and soybean (e), (f), (g), (h):
Cluster 1 predicted with QDA (a) and (e); and with k-NN

(b) and (f). Cluster 4 membership probability predicted
with QDA (c) and (g); and with k-NN (d) and (h)
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observations successfully classified by k-NN dis-

criminant into highest and lowest yield clusters.

These profiles show how site characteristics relate

to specific yield clusters (Figs. 5, 6) showing the

actual distribution of site attributes of successfully

classified observations.

For both crops in WN, areas of stable low

yields (cluster 4) had greater soil reflectance in all

the spectral bands associated with low SOM

(Figs. 5a, 6a). This response agrees with results

from multiple studies (Fernandez et al. 1988;

Chen et al. 2000; Fox et al. 2003). Soil SOM

influences soil reflectance in a wide spectrum

region (from 400 to 2500 nm) (Ben-Dor 2002). In

uphill areas, erosion removed the topsoil and this

reduced SOM and increased soil reflectance. The
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Fig. 5 Site variables boxplots for corn yield cluster 1 (h) and cluster 4 ( ) or cluster 3 for WN (a), GV (b), and F1 (c)
production fields
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lower SOM, eroded areas reduces soil water and

nutrient supply capacity, reducing crop yield both

crops. On the contrary, areas of consistent higher

yields are located in the lower positions of the

field, higher SOM and K. These areas are

consistent with the areas of high SOM levels

subject to rill erosion deposition close to the

drainage ways as described by Officer et al.

(2004). Maize yield clusters 4 and 1 differ in

ECshallow while soybean yield clusters 4 and 1

present similar values and dispersion. Areas of

higher ECshallow are associated with areas of

higher clay content in the surface (Sudduth

et al. 2003) and may have restrictions in

plant-available water supply that affected crops

differentially.

The higher levels of agreement between maize

and soybean yield clusters in GV can be explained

with site characteristics profile (Figs. 5b, 6b). For

both crops in GV, clusters 4 showed higher ECdeep

and ECshallow values than clusters 1. The ECdeep,

ECshallow and exchangeable K indicate the
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Fig. 6 Site variables boxplots for soybean yield cluster 1 (h) and cluster 4 ( ) or cluster 3 for WN (a), GV (b), and F1 (c)
production fields
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presence of shallow claypans (Kitchen et al. 2003;

Officer et al. 2004). Claypans close to the surface

impede root development and make crops prone

to water stress and lower nutrient supply (Kitchen

et al. 1999).

For both crops in F1, cluster 4 areas had higher

slopes than cluster 1 areas (Figs. 5c, 6c). This field

gave the greatest disagreement between maize and

soybean yield cluster spatial patterns. On one

hand, maize yield cluster 4 had larger ECdeep and

ECshallow than that of maize yield cluster 1. As in

GV, these areas correspond to shallow claypans

layers (Kitchen et al. 2003). On the other hand,

soybean yield cluster 4 areas had larger BR, GR,

RR, and slope as well as lower SOM and elevation

than soybean cluster 1. As observed in WN, the

increase in soil reflectance relates to SOM losses in

eroded areas associated with lower plant-available

soil water and nutrient supply, and thus lower

soybean yield.

These results indicate that each cluster had a

specific profile of site variables according to the

crop and the field. Nevertheless, ECshallow obser-

vations differ in maize yield cluster 4 and cluster

1 in all the fields. Maize yield were consistently

lower in areas with shallow claypan depth

(Kitchen et al. 2003) or areas were erosion

removed the topsoil layer (Officer et al. 2004).

In WN and F1 variables BR, GR, RR, and NIR

were consistently related to areas of lower soil

SOM and lower soybean yields. In GV there is a

clear agreement in the areas of high yield maize

and high soybean yield. This can be attributed

to the stronger influence of a shallow claypan

layer in this field, which is related to high

ECshallow and ECdeep observations in cluster 4

areas.

Conclusions

This study concludes that site characteristics

relate to stable, low and high yield across seasons.

When the relationships were evaluated, the k-NN

classified yield clusters more accurately than did

QDA, which had a poorer and inconsistent

prediction performance for some yield clusters.

We speculate that complex soil plant relation-

ships cannot always be described by a symmetric

data structure where yield clusters can be sepa-

rated by a single discriminant function, such as in

GV where both discriminant analyses preformed

well. Thus, in other fields it may be necessary to

use a different discrimination algorithm appro-

priate for non-symmetric data structures such as

k-NN to improve classification success. k-NN,

depends on the observation neighborhood and

thus it can address complex data structures

(Tominaga 1999). In other words, areas of

consistent yield have a symmetric structure in

some fields and non-symmetric in others (WN). It

is interesting to notice that the clustering proce-

dure and the prediction with k-NN are based on

multivariate statistical distances. Thus this analy-

sis demonstrates that areas of similar profiles of

site characteristics present similar yield patterns

across seasons.

Although this study indicates that field-by-field

and crop-by-crop analyses can provide a better

insight on how site characteristics relate to yield

performance, areas of consistent greater maize

yield are located in areas of low ECshallow. Also,

areas of consistent greater soybean yields were

located in areas lower soil reflectance, in two of

the three fields studied. Moreover, relative to the

similar soil spectral relationship, future studies

should consider the use of panchromatic images,

which have single spectral band and greater

spatial resolutions. Given these results, future

studies must address, if yield clusters are appro-

priate to fit site-specific management practices
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